Morphology and properties of nanocomposites based on HDPE/HDPE-g-MA blends

M.W. Spencer, Lili Cui, Youngjae Yoo, D.R. Paul*

Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, United States

Article info

Article history:
Received 10 October 2009
Received in revised form 22 December 2009
Accepted 26 December 2009
Available online 18 January 2010

Keywords:
High density polyethylene (HDPE)
HDPE-g-MA
Nanocomposites

Abstract

Nanocomposites formed from blends of high density polyethylene (HDPE) and maleic anhydride-grafted high density polyethylene (HDPE-g-MA) and M2(HT)2 organoclay were melt processed to explore the extent of exfoliation and the mechanical properties. Wide angle X-ray scattering (WAXS) and transmission electron microscopy (TEM) coupled with detailed particle analysis were used to determine the effect of HDPE-g-MA content and organoclay content on exfoliation and mechanical properties. As the HDPE-g-MA content increases, the global average particle aspect ratio initially increases drastically, reaches a maximum, and slightly decreases. The fraction of single platelets, however, increases at a steady rate for nanocomposites with HDPE-g-MA contents >25%. Relative modulus initially improves with increased levels of HDPE-g-MA, and then levels off with greater HDPE-g-MA content. Izod impact strength reaches a maximum at low HDPE-g-MA levels, decreases below the value for the pure HDPE nanocomposite, and levels off at higher HDPE-g-MA content. A composite model based on the Mori–Tanaka theory was developed to treat organoclay tactoids and single platelets as two separate types of fillers. This model gives rather good quantitative agreement between the predicted values of modulus calculated from the TEM results and that measured experimentally.

1. Introduction

Polymer nanocomposites based on organoclays can potentially lead to substantial enhancement in mechanical [1–3], barrier [4–6], thermal [7,8], and flammability [9–11] properties at very low filler concentrations while maintaining similar density and optical properties, making them attractive replacements for conventional composites. Melt mixing or compounding of polymer nanocomposites offers efficient exfoliation without the higher costs, complications, and environmental effects associated with in situ polymerization or solution blending. To obtain a well-exfoliated nanocomposite, with greatest property improvements, the individual organoclay platelets must interact favorably with the polymer matrix.

The structure of the ammonium surfactants used to modify montmorillonite (MMT) clay can be chosen to increase the affinity between the hydrophilic aluminosilicate clay and the organophilic polymer matrix. In our previous studies, nylon 6-based nanocomposites showed the best exfoliation with organoclays formed from a surfactant with only one long alkyl tail, allowing the polar polyamide more access to the silicate surface of the clay [112,13]. Non-polar polylefin matrices, such as polypropylene or polyethylene, on the other hand, result in better exfoliation with organoclays modified by a surfactant with two or more long alkyl tails, providing increased alkyl–polyolefin interactions and decreased silicate–polylefin interaction [3,14–16].

Nanocomposites formed from polylefin matrices are often modified with a polar compatibilizer to improve exfoliation and enhance properties. The grafting of maleic anhydride to the polylefin backbone significantly increases the polarity and, thus, improves exfoliation in polypropylene [3,17–24] and polyethylene [14,25–34]. Other approaches include the incorporation of polar comonomers like vinyl acetate [26,35,36], methacrylic acid [37–40], or methacrylic acid ionomers [16,41–43].

Maleated polypropylene, PP-g-MA, is typically used in relatively low quantities, comparable to the mass of organoclay, to form polypropylene-based nanocomposites and is thought of as a “compatibilizer” [19–24]. Use of small amounts of PP-g-MA is advantageous commercially owing to the substantially higher cost of PP-g-MA compared to unmodified PP. It would be useful, however, to understand how the morphology and properties of nanocomposites change as the ratio of maleated to unmaleated polylefin in the matrix changes over a broader range.
It is not practical to explore this question for polypropylene-based nanocomposites since the maleation process leads to significant scission of polypropylene chains, lowering the molecular weight and, greatly reducing the melt viscosity of PP-g-MA compared to the PP precursor [44–46]. Melt rheology is known to play some role in the exfoliation process in melt compounding since this affects the stresses imposed on the organoclay tactoids [13,47]. However, maleation of linear polyethylene does not lead to significant chain scission, making it possible to obtain commercial high density polyethylene (HDPE) and maleic anhydride-grafted high density polyethylene (HDPE-g-MA) with comparable rheological properties.

This paper explores the extent of organoclay exfoliation and the mechanical properties of melt compounded nanocomposites with matrices consisting of HDPE/HDPE-g-MA blends over the full range of compositions. This allows a useful way to explore the relationship between mechanical properties and the degree of exfoliation without dramatically changing the nature of the polymer matrix and to obtain further insights into the “compatibilizing” role of maleated polyolefins for nanocomposite formation.

2. Experimental

2.1. Materials

Table 1 summarizes the materials used in this study. The high density polyethylene, HDPE, (Alathon® M6020, LyondellBasell) and the maleic anhydride-grafted high density polyethylene, HDPE-g-MA, (Fusabond® E MB100D, Du Pont) were chosen because they have the same melt index (MI = 2 g/10 min). It is expected that the HPDE and the HDPE-g-MA used are miscible with each other based on prior work with related polyolefins [48,49]. The organoclay designated as M2(HT)2, donated by Southern Clay Products, was prepared by a cation exchange reaction between sodium montmorillonite (Na⁺ MMT) and a two-tailed quaternary ammonium surfactant, dimethyl bis(hydrogenated-tallow) ammonium chloride (Arquad 2HT-75). Some frequently used abbreviations are employed here to represent the substituents on the ammonium cation, e.g., M for methyl and HT represents long alkyl chains from hydrogenated-tallow [11,16,50]. This organoclay was selected based upon recent studies showing improved organoclay exfoliation in polyethylene using surfactants with two tails on the ammonium ion instead of one tail [14,16,35,38]. The polymers employed have better affinity for the largely aliphatic organic modifier than for the unmodified clay surface. The larger area of the clay surface covered by two tails increases the favorable surfactant–polymer interaction and decreases the unfavorable polymer–clay interaction.

2.2. Melt processing

The organoclay and the HDPE-g-MA were dried for a minimum of 24 h in a vacuum oven at 80 °C, prior to melt processing. Nanocomposites were melt compounded in a Haake co-rotating, intermeshing twin screw extruder (diameter = 30 mm, L/D = 10) using a barrel temperature of 200–205 °C, a screw speed of 280 rpm, and a feed rate of 1 kg/h. The HDPE, the HDPE-g-MA, and the organoclay were hand-mixed prior to extrusion and introduced into the extruder by a single hopper.

Tensile specimens (ASTM D638, Type I) and Izod bars (ASTM D256) were prepared by an Arburg Allrounder 305-210-700 injection-molding machine using a barrel temperature of 200 °C (feed) to 205 °C (die), an injection pressure of 75 bar, and a holding pressure of 50 bar. After molding, the samples were immediately sealed in a polyethylene bag and placed in a vacuum desiccator for a minimum of 24 h prior to testing.

The montmorillonite content of the nanocomposite was determined by placing pre-dried nanocomposite pellets in a furnace at 900 °C for 45 min and weighing the remaining MMT ash, correcting for loss of structural water [13,51–53].

2.3. Characterization

Differential scanning calorimetric (DSC) thermograms were recorded using a Perkin–Elmer Model DSC-7 at a heating rate of 10 °C/min under an extra dry N₂ atmosphere over a temperature range of 30–180 °C. The pre-dried neat HDPE and HDPE-g-MA samples of 7–10 mg were packed in aluminum pans, heated to 180 °C, and held there for 5 min to reset the thermal history. The melting temperature and the heat of fusion were determined from the second heating scan. The percent crystallinity was determined by dividing the heat of fusion value by 293 J/g, the heat of fusion of 100% crystalline polyethylene [54].

Morphology was examined primarily via a JEOL 2010F transmission electron microscope (TEM) operating under an accelerating voltage of 120 kV. Some samples were observed using a FEI Tecnai G2 F20 X-TWIN TEM operating under an accelerating voltage of 200 kV. Ultra-thin sections (~50 nm) for morphological analysis were taken from the core portion of an injection-molded bar in the plane defined by the flow direction (FD) and the normal direction (ND) using an RMC PowerTome XL microtome [55]. The nanocomposite samples and the diamond knife were cooled to between −75 and −85 °C and −60 °C, respectively, using liquid nitrogen. Cut sections were collected onto 400 mesh grids and dried with filter paper.

Wide angle X-ray scattering (WAXS) scans were performed using a Bruker-AXS D8 Advance diffractometer in the reflection

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
mode, using an incident X-ray wavelength of 0.1541 nm at a scan rate of 3.0°/min over the range of 2θ = 1°–12°. The skin of the major face of the rectangular nanocomposite bars and the organoclay powder were scanned [56].

Tensile tests were performed according to ASTM D638 using an Instron model 1137 machine upgraded for computerized data acquisition. Tensile modulus values were determined using an extensometer at a crosshead rate of 0.51 cm/min and averaged from at least five specimens. Elongation at break and yield strength data were taken at 0.51 cm/min and averaged from at least three specimens. Elongations greater than 400% could not be measured, due to the limitations of crosshead travel.

Notched Izod impact tests were conducted at room temperature using a 6.8 J hammer and 3.5 m/s impact velocity using a TMI Impact tester (model 43-02). Standard notches were made according to ASTM D256. Frequently, as-molded rectangular bars are cut in half (to generate more samples) and the Izod impact strength data from the gate end (the end at which the molten polymer enters the mold during injection molding) and the far end of the samples. Thus, in this work, the Izod impact strength data were averaged from four samples each of the gate end, of the middle, and of the far end of the bars.

2.4. Particle analysis

Particle analyses were performed on TEM micrographs at magnifications of 8–30 K, depending on the extent of exfoliation in the sample. Because of low contrast, TEM images were converted into .jpg format and opened in GIMP (GNU Image Manipulation Program). Two tracings in separate, transparent layers were made into .jpg format and opened in GIMP (GNU Image Manipulation Program). SigmaScan Pro, where each particle tracing was assigned a thickness of 0.94 nm corresponding to the limitations of crosshead travel.

Since the numbers assigned in the tracing of the length and the thickness of these platelets could not accurately be measured and was assigned a thickness of 0.94 nm corresponding to the known results for MMT platelets [35,57]. Each tracing was saved separately in .tif format and imported into the image analysis program, SigmaScan Pro, where each particle tracing was assigned a number and their characteristic dimensions were measured. Since the numbers assigned in the tracing of the length and the thickness of the platelets do not correspond, the particle dimensions must be matched manually. In this work, four different kinds of aspect ratios are calculated, i.e., the number and weight averages of the aspect ratios calculated for individual particles, \(\frac{l}{t_{n}} \) and \(\frac{l}{t_{w}} \), and ratios of the number and weight average of particle lengths and thicknesses, \(\frac{t_{n}}{t_{w}} \) and \(\frac{t_{w}}{t_{w}} \).

To ensure statistical validity of the analysis, 200–400 particles were counted to measure the length, thickness, and aspect ratio. The results are summarized in Table 2.

Table 2

Results of one population particle analysis of nanocomposites.

<table>
<thead>
<tr>
<th>HDPE-g-MA (%)</th>
<th>Wt% MMT</th>
<th>Mass HDPE-g-MA/Mass organoclay</th>
<th>Total number of particles</th>
<th>Number average particle length ((l_{n}, nm))</th>
<th>Number average particle thickness ((t_{n}, nm))</th>
<th>Weight average particle length ((l_{w}, nm))</th>
<th>Weight average particle thickness ((t_{w}, nm))</th>
<th>Number average aspect ratio (\frac{l_{n}}{t_{n}})</th>
<th>Number average aspect ratio (\frac{l_{w}}{t_{w}})</th>
<th>Weight average aspect ratio (\frac{l_{w}}{t_{w}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.05</td>
<td>0</td>
<td>206</td>
<td>315.6</td>
<td>23.7</td>
<td>568.1</td>
<td>56.4</td>
<td>13.3</td>
<td>20.3</td>
<td>10.1</td>
</tr>
<tr>
<td>0.5</td>
<td>5.29</td>
<td>0.05</td>
<td>225</td>
<td>289.5</td>
<td>15.1</td>
<td>430.4</td>
<td>33.1</td>
<td>19.2</td>
<td>29.0</td>
<td>13.0</td>
</tr>
<tr>
<td>3</td>
<td>4.87</td>
<td>0.34</td>
<td>221</td>
<td>213.1</td>
<td>9.6</td>
<td>271.1</td>
<td>18.7</td>
<td>22.2</td>
<td>33.1</td>
<td>14.5</td>
</tr>
<tr>
<td>9</td>
<td>4.94</td>
<td>1.01</td>
<td>321</td>
<td>196.2</td>
<td>4.6</td>
<td>256.7</td>
<td>8.5</td>
<td>42.8</td>
<td>58.4</td>
<td>30.2</td>
</tr>
<tr>
<td>18</td>
<td>5.13</td>
<td>1.94</td>
<td>336</td>
<td>99.4</td>
<td>2.3</td>
<td>128</td>
<td>7.0</td>
<td>43.7</td>
<td>55.7</td>
<td>18.3</td>
</tr>
<tr>
<td>25</td>
<td>5.2</td>
<td>2.65</td>
<td>340</td>
<td>97.5</td>
<td>1.7</td>
<td>126.5</td>
<td>2.2</td>
<td>57.6</td>
<td>62.1</td>
<td>58.4</td>
</tr>
<tr>
<td>50</td>
<td>5.41</td>
<td>5.08</td>
<td>408</td>
<td>84.9</td>
<td>1.4</td>
<td>109.4</td>
<td>3.3</td>
<td>59.8</td>
<td>64.9</td>
<td>33.6</td>
</tr>
<tr>
<td>65</td>
<td>5.3</td>
<td>6.76</td>
<td>349</td>
<td>73.5</td>
<td>1.2</td>
<td>90.8</td>
<td>1.6</td>
<td>59.2</td>
<td>60.5</td>
<td>55.2</td>
</tr>
<tr>
<td>85</td>
<td>5.31</td>
<td>8.81</td>
<td>355</td>
<td>66.2</td>
<td>1.2</td>
<td>79.9</td>
<td>1.2</td>
<td>56.8</td>
<td>57.8</td>
<td>65.1</td>
</tr>
<tr>
<td>100</td>
<td>5.37</td>
<td>10.25</td>
<td>362</td>
<td>55.5</td>
<td>1.1</td>
<td>70.2</td>
<td>1.2</td>
<td>48.7</td>
<td>48.2</td>
<td>59.1</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th>Material</th>
<th>T_m (°C)</th>
<th>ΔH_m (J/g)</th>
<th>% Crystallinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE</td>
<td>136.7</td>
<td>193.2</td>
<td>65.9</td>
</tr>
<tr>
<td>HDPE-g-MA</td>
<td>133.5</td>
<td>175.0</td>
<td>59.7</td>
</tr>
</tbody>
</table>

The change in impact strength with increased HDPE-g-MA content was not expected and the reasons are not well understood. Molding conditions such as injection speed were varied for both neat HDPE and neat HDPE-g-MA, but the Izod impact strength for HDPE was always significantly higher than for HDPE-g-MA. Differences in crystallinity, interactions between maleic anhydride groups, and differences in the molecular weight distributions may affect the fracture energy; however, sorting out these and possibly other reasons for the differences shown was considered to be beyond the scope of this paper.

3.2. Morphology

3.2.1. Transmission electron microscopy

TEM observations allow for a visual, qualitative assessment of the degree of organoclay exfoliation in polymer nanocomposites. Fig. 2 shows representative TEM micrographs for nanocomposites with different HDPE-g-MA concentrations having a nominal MMT content of 5 wt%. For the HDPE nanocomposites (Fig. 2(a)), large tactoids are seen, indicating poor clay dispersion. Particles with thicknesses of 1 μm or greater can be found.

The addition of merely 0.5 wt% HDPE-g-MA (Fig. 2(b)) to the polymer matrix significantly improves the exfoliation of the organoclay. Taking note of the different scale bars, the size of tactoids is decreased dramatically. Though large tactoids are still present, many smaller particles are seen. Clearly, even small amounts of HDPE-g-MA dramatically influence the ability of the polymer matrix to exfoliate the organoclay.

As more HDPE-g-MA is added to the polymer matrix, exfoliation continues to improve. As seen in Fig. 2(c), (d), and (e), for nanocomposites with 3 wt%, 9 wt%, and 18 wt% of HDPE-g-MA respectively, the size of the clay tactoids continue to decrease and the ratio of smaller particles to larger tactoids increases with increased polar content.

Nanocomposites based on 25 wt%, 50 wt%, 65 wt%, 85 wt%, and 100 wt% HDPE-g-MA are shown in Fig. 2(f), (g), (h), (i), and (j), respectively, and have a well-exfoliated morphology consisting primarily of single platelets. Little difference in the extent of exfoliation can be seen qualitatively.

The noted enhancements in exfoliation with increased amounts of polar MA groups in the polymer matrix indicate improved interactions between the polymer and the organoclay. The exfoliation improves rapidly with the addition of initial amounts of HDPE-g-MA, but after a certain threshold value is reached (~25 wt% HDPE-g-MA), little change in the extent of exfoliation is seen.

3.2.2. Particle analysis

Particle analysis is used to quantify the extent of exfoliation shown in the TEM images. The statistical results and the MMT concentration of each nanocomposite as determined by incineration are shown in Table 2. The aspect ratios obtained by averaging the values of each particle, l/t_{h} and l/t_{w} are generally larger than those calculated from the ratio of the corresponding average values of length and thickness, (l_{h}/t_{h}) and (l_{w}/t_{w}). The ratio of number average particle length and thickness, (l_{h}/t_{h}), is generally larger than the ratio of weight average particle length and thickness, (l_{w}/t_{w}) while the weight average aspect ratio obtained by averaging values of each particle, (l/t_{w}), is always larger than the corresponding number average ratio, (l/t_{n}). These trends are in a good agreement with previous reports [15,35,61].

Fig. 3 shows a series of representative histograms of particle length, thickness and aspect ratio for HDPE/HDPE-g-MA 25% based nanocomposites containing ~5 wt% MMT. All of these features showed broad distributions based on the analysis of a total of 340
particles. To better understand the relationship between the polarity of the polymer matrix and the organoclay exfoliation, plots of particle lengths and thicknesses (Fig. 4(a) and (b)) and particle aspect ratios (Fig. 4(c)) as a function of HDPE-g-MA content in the polymer matrix are presented for nanocomposites containing 5 wt% MMT.

The quantitative trends mirror the qualitative TEM results discussed above. Average particle thickness and length decrease rapidly upon the addition of even small amounts of HDPE-g-MA. When the particle thickness decreases at a higher rate than the particle length, the aspect ratio increases. At HDPE-g-MA contents of 9% and 18% the length and thickness continue to decrease, but not as rapidly, indicating smaller improvements in exfoliation. For nanocomposites based on blends with HDPE-g-MA contents of >25%, the average particle thickness decreases gradually, due to the particle thickness limit of a single platelet (0.94 nm). Because the average particle length decreases at a greater rate than the particle thickness, the aspect ratio gradually decreases for matrices at >50% HDPE-g-MA content.
For further insight, the fraction of single platelets (Fig. 4(d)) was calculated by dividing the number of particles with a thickness of nearly 1 nm by the total number of particles. The fraction of single platelets increases with increasing HDPE-g-MA content for nanocomposites with >20% HDPE-g-MA. As the amount of single platelets increases, the average particle thickness decreases at a slower rate due to the thickness limit of a single platelet. Increased particle breakup and lower numbers of overlapping particles, however, continues to decrease the average particle length, resulting in a decreased aspect ratio.

Since partially exfoliated organoclay tactoids and fully exfoliated single platelets have differing reinforcement effects on the nanocomposites, these two populations of particles were also analyzed separately. The number average aspect ratio, $C_L = t/D$, is shown for both single platelets with measured thicknesses of about 1 nm and for the remaining tactoids in Fig. 5 and Table 4. Surprisingly there is not a significant difference in the trends of these two populations. The decrease in single platelet aspect ratio may be attributed to lower amounts of slightly overlapping particles that are measured as single platelets and to increased particle breakup.

A schematic illustration of the change in particle dimensions for increased levels of HDPE-g-MA is shown in Fig. 6. Initially, particle thickness decreases faster than particle length, increasing the aspect ratio. As the average particle thickness approaches the limit of the platelet thickness, the particle length decreases faster than the particle thickness, decreasing the aspect ratio.

The average particle lengths for all these nanocomposites are larger than those observed for nylon 6 nanocomposites, where exfoliation is near ideal, i.e., most of the particles are individual platelets [62,63]. The larger particles seen here are likely due to “skewing” of the platelets in the thicker clay bundles. However, the average particle lengths do approach the values seen in nylon 6 nanocomposites when HDPE-g-MA is used as the matrix, indicating near maximum exfoliation.

Ploehn and Liu accurately characterized a commonly used montmorillonite by depositing platelets on a mica surface from a very dilute suspension and then measuring the lateral dimensions by atomic force microscopy [64]. Since the lateral size or shape of the platelets is not uniform, the platelet area, A, was measured and its square-root was normalized by platelet thickness, t, to calculate an “aspect ratio”. If each platelet were circular with diameter D, then

$$\sqrt{A}/t = \sqrt{\pi/4}(D/t) = 0.89(D/t)$$

Since t is approximately 1 nm, the most probable lateral dimension is in the range of 100–200 nm [64,65]. The average particle lengths found in this study fall below this range. However, the observed lengths reflect a random cut through irregular platelets and particles and only rarely will the maximum dimension be seen [66,67].
3.2.3. Wide angle X-ray scattering

WAXS is commonly used to characterize the exfoliation structure of nanocomposites. WAXS scans of the neat organoclay (M2(HT)2) and of the skin portion of nanocomposites with ~5% MMT prepared from various polymer matrices are shown in Fig. 7. The d₀₀₁ peak intensity decreases with increasing HDPE-g-MA content and disappears for nanocomposites with >50% HDPE-g-MA in the polymer matrix, suggesting a highly exfoliated structure. The d₀₀₁ peak for HDPE-based nanocomposites is shifted slightly to the right of the peak for the neat organoclay. For nanocomposites with HDPE-g-MA compatibilizer, the peak shifts slightly to the left of the HDPE-based nanocomposite, but remains to the right of the peak for the neat organoclay. This shift to higher angle and lower d-spacing could indicate degradation of the surfactant, causing the clay galleries to collapse as surfactant mass is lost from within the galleries [16]. These differences are so small, however, that it is difficult to attach much physical meaning to them [15,61]. These results are in good agreement with the TEM analysis discussed above. The WAXS results give only limited information about morphology and TEM, though providing a clearer understanding of exfoliation levels, examines only a small volume and may not be representative of the nanocomposite as a whole. Therefore, bulk mechanical properties were measured to complement TEM and WAXS analyses [15,61].

3.3. Mechanical properties

Of the various mechanical properties, modulus provides the best indicator of organoclay exfoliation [1]. Modulus data are shown in Table 5 for nanocomposites with MMT contents of ~5 wt%. Fig. 8(a) shows the effect of MMT concentration on the tensile modulus of HDPE nanocomposites with various amounts of HDPE-g-MA. As expected, increasing MMT content results in significant improvements in modulus. Since the moduli of the neat HDPE-based polymers (Eₘₑ) vary with HDPE-g-MA content, examining the relative moduli (E/Eₘₑ) allows more useful comparisons. Relative modulus as a function of MMT concentration in nanocomposites with various amounts of HDPE-g-MA is shown in Fig. 8(b). At high MMT contents, the improvement in modulus increases rapidly with the addition of small amounts of HDPE-g-MA. At higher HDPE-g-
MA levels, i.e., >5%, the increase caused by the HDPE-g-MA seems to be independent of the amount of HDPE-g-MA added.

To better understand this, the relative modulus is plotted versus the ratio of the mass of HDPE-g-MA to the mass of the organoclay for various MMT loadings in Fig. 9(a). The relative modulus is increased significantly for nanocomposites with an HDPE-g-MA/organoclay ratio of about 0.5. Increasing the ratio to 2, however, results in little further change. Kim et al. found a similar trend for PP/PP-g-MA/organoclay nanocomposites [15]. Further increasing the amount of HDPE-g-MA in the nanocomposites increases the modulus, but at a much lower rate, as shown in Fig. 9(b). Fig. 10 shows the relative moduli for nanocomposites with ~5 wt% MMT plotted against the aspect ratios, \(\frac{L}{T_\alpha} \), obtained from TEM images. In general, the relative modulus increases as the aspect ratio increases. The nanocomposites with >50% HDPE-g-MA in the matrix, however, show a slight increase in relative modulus and a small decrease in aspect ratio. This might be explained by the decreased modulus of the matrix, allowing for higher improvements in relative modulus [35,38,56,63,68].

The yield strength increases upon addition of MMT, as shown in Fig. 11(a). Also, the addition of small amounts of HDPE-g-MA to the polymer matrix results in relatively large increases in yield strength. With HDPE-g-MA levels over ~15–25%, the yield strength levels off and then declines. Thus, the decreased yield strength of the matrix offsets, in part, the benefits associated with improved organoclay exfoliation.

Elongation at break data are presented in Fig. 11(b). Nanocomposites with low MMT levels (<3 wt%) were too ductile to determine the breaking point using the available equipment. The elongation at break decreases with the addition of MMT and increasing the amount of HDPE-g-MA accelerates this decrease. Thus, enhanced exfoliation leads to less ductile nanocomposites.

Fracture toughness measured by the Izod impact strength is an important property for some applications. Polymer nanocomposites based on polyolefins have been reported to have different impact values for the gate end and far end of injection-molded Izod bars [27,43,69]. As with the bars of neat polymer, the fracture energy decreases for the nanocomposites from the gate end to the middle and from the middle to the far end (Fig. 12). This could be the result of differences in the molecular orientation, crystal orientation, and percent crystallinity as discussed above.

Table 4
Parameters used in the Mori–Tanaka two population model.\(^a\)

<table>
<thead>
<tr>
<th>HDPE-g-MA %</th>
<th>d-spacing ((d_0), nm)</th>
<th>Vol fraction of MMT in particle ((\varphi_{\text{MMT}}))</th>
<th>Weight fraction of MMT in nanocomposites (%)</th>
<th>Number average aspect ratio for tactoids ((\frac{L}{T_\alpha}))</th>
<th>Number average aspect ratio for single platelets ((\frac{L}{T_{\text{sp}}}))</th>
<th>Vol fraction of the tactoids in nanocomposites ((\varphi_T))</th>
<th>Vol fraction of the single platelets in nanocomposites ((\varphi_{\text{sp}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.24</td>
<td>0.420</td>
<td>5.2</td>
<td>20.3</td>
<td>0.0431</td>
<td>0.0428</td>
<td>0.00005</td>
</tr>
<tr>
<td>0.5</td>
<td>2.21</td>
<td>0.425</td>
<td>5.2</td>
<td>29.0</td>
<td>0.0435</td>
<td>0.0442</td>
<td>0.0005</td>
</tr>
<tr>
<td>3</td>
<td>2.24</td>
<td>0.420</td>
<td>5.2</td>
<td>33.1</td>
<td>0.0435</td>
<td>0.0442</td>
<td>0.0005</td>
</tr>
<tr>
<td>9</td>
<td>2.27</td>
<td>0.414</td>
<td>5.2</td>
<td>58.4</td>
<td>0.0438</td>
<td>0.0302</td>
<td>0.0053</td>
</tr>
<tr>
<td>18</td>
<td>2.30</td>
<td>0.409</td>
<td>5.2</td>
<td>61.6</td>
<td>0.0438</td>
<td>0.0302</td>
<td>0.0053</td>
</tr>
<tr>
<td>25</td>
<td>2.33</td>
<td>0.404</td>
<td>5.2</td>
<td>58.1</td>
<td>67.5</td>
<td>0.0201</td>
<td>0.0094</td>
</tr>
<tr>
<td>50</td>
<td>2.33(^b)</td>
<td>0.404</td>
<td>5.4</td>
<td>67.6</td>
<td>63.4</td>
<td>0.0201</td>
<td>0.0094</td>
</tr>
<tr>
<td>65</td>
<td>2.33(^b)</td>
<td>0.404</td>
<td>5.3</td>
<td>66.4</td>
<td>57.6</td>
<td>0.0149</td>
<td>0.0115</td>
</tr>
<tr>
<td>85</td>
<td>2.33(^b)</td>
<td>0.404</td>
<td>5.3</td>
<td>55.9</td>
<td>58.9</td>
<td>0.0071</td>
<td>0.0147</td>
</tr>
<tr>
<td>100</td>
<td>2.33(^b)</td>
<td>0.404</td>
<td>5.4</td>
<td>52.2</td>
<td>47.6</td>
<td>0.0053</td>
<td>0.0154</td>
</tr>
</tbody>
</table>

\(^a\) For 5 wt% MMT.

\(^b\) Assumed to be equal to that of the 25% HDPE-g-MA nanocomposite.

* Fig. 6. Schematic illustration of the change of effective particle length and thickness with increasing HDPE-g-MA content.\n
* Fig. 7. WAXS scans of pristine organoclay, M2(HT)\(\text{2}\), and nanocomposites containing ~5 wt% MMT formed from HDPE/HDPE-g-MA copolymers with various HDPE-g-MA contents. The curves are vertically offset for clarity.
Similarly, differences in organoclay platelet orientation may contribute. As shown in Fig. 12, impact strength generally decreases as MMT content increases regardless of the portion of the bar tested. Addition of small amounts of MMT (1.5%) results in a large decrease in impact strength relative to that of the matrix polymer. As the MMT content is increased from 1.5 wt% to 7 wt%, the impact strength decreases gradually for nanocomposites with low HDPE-g-MA content (<25%). Nanocomposites with higher HDPE-g-MA content (Fig. 12(c) and (d)), show a slight minimum in impact strength (~3 wt%) measured at the middle and the gate end.

The Izod impact strength of nanocomposites with various clay loadings is plotted in Fig. 13(a) versus the ratio of HDPE-g-MA to organoclay. The maximum fracture energy occurs for an HDPE-g-MA/organoclay ratio between 0.5 and 1. The fracture energy recorded in an impact test reflects the integration of the resisting force of the sample over the range of the sample deflection. Raising the HDPE-g-MA/organoclay ratio improves the exfoliation, increasing the forces due to the high modulus and yield strength but decreasing the ductility. Although high levels of exfoliation tend to decrease the impact energy [13,50,70–72], in some cases the increase of force outweighs the decrease in ductility [16,73–75]. In this work, it appears that the initial addition of HDPE-g-MA improves the clay exfoliation and, hence, the modulus, to a greater extent than it decreases the ductility. Further increasing the HDPE-g-MA/organoclay ratio, however, lowers the impact strength below the pure HDPE level. As shown in Fig. 13(b), there is not much change at higher levels of HDPE-g-MA.

4. Composite model predictions of modulus

Theoretical modeling is an attractive approach for the design of polymer composite systems, and numerous models [68,76–78] have been proposed for predicting the properties of composites and for correlating experimental data with such predictions. Previous papers [35,38,43,53,62,63] have demonstrated such models can be useful for composites with nanosized fillers. However, numerous assumptions are made when using such models. For example, it is assumed that the polymer matrix is not affected by the presence of the filler, that the filler is of uniform dimensions and is perfectly aligned, that the matrix and filler are isotropic, that the matrix and

<table>
<thead>
<tr>
<th>HDPE-g-MA %</th>
<th>E (GPa)</th>
<th>E_m (GPa)</th>
<th>E/E_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.38</td>
<td>1.12</td>
<td>1.23</td>
</tr>
<tr>
<td>0.5</td>
<td>1.44</td>
<td>1.10</td>
<td>1.31</td>
</tr>
<tr>
<td>3</td>
<td>1.64</td>
<td>1.17</td>
<td>1.40</td>
</tr>
<tr>
<td>5</td>
<td>1.65</td>
<td>1.12</td>
<td>1.48</td>
</tr>
<tr>
<td>9</td>
<td>1.68</td>
<td>1.17</td>
<td>1.44</td>
</tr>
<tr>
<td>18</td>
<td>1.68</td>
<td>1.14</td>
<td>1.47</td>
</tr>
<tr>
<td>25</td>
<td>1.78</td>
<td>1.15</td>
<td>1.54</td>
</tr>
<tr>
<td>50</td>
<td>1.60</td>
<td>1.07</td>
<td>1.49</td>
</tr>
<tr>
<td>65</td>
<td>1.52</td>
<td>1.00</td>
<td>1.54</td>
</tr>
<tr>
<td>85</td>
<td>1.48</td>
<td>0.96</td>
<td>1.54</td>
</tr>
<tr>
<td>100</td>
<td>1.51</td>
<td>0.98</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Table 5: Modulus results for nanocomposites with MMT contents of ~5 wt%.
filler are well bonded, and that there are no particle–particle interactions or agglomerations [63]. Both the Halpin–Tsai equations and the Mori–Tanaka theory are used in this paper to explore the relationship between particle aspect ratio and experimental modulus.

The Halpin–Tsai equations can be used to predict the tensile modulus of nanocomposites from the neat component properties and the particle aspect ratios as determined by quantitative particle analysis of TEM images. The expression for the longitudinal tensile modulus [38, 63, 79] is

$$E_{(H-T)} = \frac{1}{f_p h} \left(\frac{E_p}{E_m} \right) \frac{1}{1 - \phi_p \eta}$$

where E_p and E_m are the modulus values of the filler particle and matrix polymer, respectively, ϕ_p is the volume fraction of the filler particles, (l/t) represents the filler aspect ratio, and η is given by

$$\eta = \frac{\left(\frac{E_p}{E_m} \right) - 1}{\left(\frac{E_p}{E_m} \right) + 2(l/t)}$$

The Mori–Tanaka average stress theory [80] is based on the principles of Eshelby's inclusion model for predicting an elastic stress field in and around an ellipsoidal particle in an infinite matrix [81]. To account for finite filler concentrations, however, Mori and Tanaka [80], considered a non-dilute composite of many identical spheroidal particles that cause the matrix to experience an average stress different from the applied stress. The volume average stress over the entire composite was forced to equal the applied stress to satisfy equilibrium conditions. Tandon and Weng [82] used this assumption together with Eshelby’s solution to derive complete analytical solutions for the elastic moduli of an isotropic matrix filled with aligned spheroidal inclusions. For a composite with disk-
shaped inclusions, the relative modulus parallel to either major axis of the disk-like spheroids is

\[E_{\text{relative}} = \frac{E_{\text{M-T}}}{E_m} = \frac{2A - 2\phi_p A_3 + (1 - \phi_m)A_4 + (1 + \phi_m)A_5A_1}{A_2A_3} \]

where \(\phi_p \) is the volume fraction of filler, \(\phi_m \) is Poisson's ratio of the matrix, and \(A_1, A_2, A_3, A_4, A_5 \) are functions of Eshelby's tensor and the properties of the filler and the matrix, specifically Young's modulus, Poisson's ratio, filler concentration, and filler aspect ratio; complete details of these equations are given elsewhere [82]. The Poisson's ratios of the matrix, \(\nu_m \), and of the organoclay, \(\nu_p \), are assumed to be 0.35 and 0.20 respectively [63, 83, 84].

In comparing the results of the Halpin–Tsai equations and the Mori–Tanaka theory, there are important differences between the two theories to bear in mind. The Mori–Tanaka theory treats disks as ellipsoidal particles, while the Halpin–Tsai equations treat disks as rectangular platelets. Since the length and, therefore, the aspect ratio are not constant across a particle, the Halpin–Tsai equations assume a larger particle size than the Mori–Tanaka theory. Additionally, the Halpin–Tsai equations are independent of Poisson's ratio of the filler and the matrix [63].

In the model calculations, there are generally two ways of treating the filler particles. One is to assume good exfoliation (method 1) and treat the MMT platelets themselves as the reinforcing filler particles. In this case, \(E_p = E_{\text{MMT}} = 178 \text{ GPa} \) [63] and \(\phi_p = \phi_{\text{MMT}} = 0.0175 \) at 5 wt% MMT.

Another way is to consider the partially exfoliated clay particles as parallel arrangements of MMT platelets and gallery material as described in previous reports [15, 35, 38, 63, 79, 85] (method 2). The tensile modulus of such an effective particle is often assumed to be given by the following rule of mixtures

\[E_p = \nu_{\text{MMT}} E_{\text{MMT}} + \nu_{\text{gallery}} E_{\text{gallery}} \]

where \(\nu_{\text{MMT}} \) and \(\nu_{\text{gallery}} \) are the volume fraction of montmorillonite and of the gallery space in the effective particle, while \(E_{\text{MMT}} \) and \(E_{\text{gallery}} \) are their corresponding moduli. The volume fraction of MMT platelets in the particle, \(\nu_{\text{MMT}} \), is calculated as the ratio of the thickness of an individual platelet and the d-spacing of the nanocomposite as determined by the WAXS analysis

\[\nu_{\text{MMT}} = \frac{t_{\text{platelet}}}{d_{001}} \]

Considering that the modulus of the organic material in the gallery is significantly smaller than the modulus of the MMT platelets, Eq. (3) reduces to

\[E_p = \nu_{\text{MMT}} E_{\text{MMT}} \]

The volume fraction of the filler particles in the composites can be estimated as

\[\phi_p = \frac{\text{volume of MMT}}{\text{volume of nanocomposite}} \cdot \frac{\text{volume of filler particle}}{\text{volume of MMT}} = \frac{\phi_{\text{MMT}}}{\nu_{\text{MMT}}} \]
Thus, the d_{001} values determined by WAXS are needed for predictions using method 2. It is easy to determine the d-spacing from WAXS scans of nanocomposites based on matrices with ≤25% HDPE-g-MA; however, at higher levels of HDPE-g-MA, no distinctive peaks are found in the WAXS scans. Thus, in order to apply the partially exfoliated particle assumption to nanocomposites with ≥50% HDPE-g-MA, the d-spacing is assumed to be equal to that of the 25% HDPE-g-MA nanocomposite.

The aspect ratios calculated from ~5 wt% samples are applied in the models for all clay loadings. For simplicity, the (l/t)_n aspect ratio is used in all predictions shown. Different aspect ratios give similar, though different, results.

Since TEM and subsequent image analysis reveal that nanocomposites with HDPE-g-MA matrices are almost completely exfoliated, method 1 can be used for the model predictions. Fig. 14(a) compares the predictions for relative modulus as a function of MMT loading obtained from both the Halpin–Tsai and Mori–Tanaka methods with experimental data. The Mori–Tanaka method describes the data well while the Halpin–Tsai method gives significantly higher results. It appears that the Mori–Tanaka theory predicts both the exfoliated and the non-exfoliated cases better, it was selected to be the base method for the remaining predictions. If the value of E_p used in method 2 is arbitrarily reduced from 74.7 GPa, as estimated from Eq. (7), to 13.5 GPa, a much better fit of the experimental points is attained, as shown in Fig. 14(b). The lower apparent modulus for the tactoids suggests that Eq. (7) grossly overestimates the stress transfer between platelets in the tactoids.

Nanocomposites with ≥25% HDPE-g-MA consist of both organoclay tactoids and dispersed single platelets. As shown, these distinct particles have different effects on the mechanical properties of the nanocomposite and separate methods are needed to predict their properties. When both particle types exist in a single nanocomposite, they should be considered separately in a two population model to more accurately predict the experimental modulus. Thus, the aspect ratios for single platelets and the aspect ratios of the remaining tactoids are both employed in the model.

The volume fractions of filler in tactoids (\phi_T) and in single platelets (\phi_{sp}) can be estimated by multiplying the fraction of the particle areas by the volume fraction of MMT as shown in

\[\phi_T = \phi_{MMT} \frac{\sum_i (l_i t_i)_T}{\sum_i (l_i t_i)_T + \sum_{i} (l_i t_i)_{sp} + \sum_{i} (l_i t_i)_{T}} \]

(9)

and

\[\phi_{sp} = \phi_{MMT} \frac{\sum_i (l_i t_i)_{sp}}{\sum_i (l_i t_i)_T + \sum_{i} (l_i t_i)_{sp} + \sum_{i} (l_i t_i)_{T}} \]

(10)

where the subscripts T and sp indicate the parameters for the tactoids and the single platelets respectively and \(\nu_{MMT} \) is the
volume fraction of MMT in the effective particle, as calculated in Eq. (6). Fig. 15 shows the filler volume fractions versus the HDPE-g-MA content of the matrix. Clearly, the volume fraction of tactoids, ϕ_T, decreases while the volume fraction of single platelets, ϕ_{sp}, increases with increased levels of HDPE-g-MA, reflecting improved exfoliation.

The contributions to the relative modulus of the tactoids and the single platelets are calculated by substituting the appropriate particle parameters into Eq. (4) as shown in

$$\frac{E_{T}^{(M-T)}}{E_m} = \frac{2A_T}{2A_T + \phi_T - 2\phi_T A_3 T + (1 - \phi_m)A_4 T + (1 + \phi_m)A_5 T A_T}$$

(11)

and

$$\frac{E_{sp}^{(M-T)}}{E_m} = \frac{2A_{sp}}{2A_{sp} + \phi_{sp} - 2\phi_{sp} A_3 sp + (1 - \phi_m)A_4 sp + (1 + \phi_m)A_5 sp A_{sp}}$$

(12)

The particle moduli used for the tactoids and single platelets are 13.5 GPa and 178 GPa respectively, as suggested above. The Poisson’s ratio for both tactoids and single platelets is assumed to be 0.20. Although the Poisson’s ratio of the tactoids is likely somewhat higher than that of the single platelets, the model is insensitive to Poisson’s ratio of both the matrix and the filler within the range of 0.20 and 0.40. The total relative modulus of the nanocomposite is calculated by adding the tactoid and single platelet contributions and subtracting one to avoid double counting the matrix contribution as follows

$$\frac{E^{(M-T)}}{E_m} = \frac{E_{T}^{(M-T)}}{E_m} + \frac{E_{sp}^{(M-T)}}{E_m} - 1$$

(13)

The parameters used in the two population Mori–Tanaka model for nanocomposites containing ~5 wt% MMT are listed in Table 4.

Fig. 16(a) and (b) show the resulting predictions by the two population Mori–Tanaka model and the experimental points for HDPE-based nanocomposites with 25% and 50% HDPE-g-MA respectively. The predictions fit the data well in both cases, indicating that such a two particle population model appears to be most appropriate for this system. That is, treating tactoids and single platelets separately rather than averaging them together proves to be a more accurate way to model these nanocomposite properties.

To see how well this model works over the entire range of composition of HDPE/HDPE-g-MA blends, the two population Mori–Tanaka predictions and experimental data for nanocomposites of 5 wt% MMT are shown in Fig. 17. The model predictions reasonably fit the experimental data over the entire range of

Fig. 15. Filler volume fractions for tactoids and single platelets used in the two population Mori–Tanaka model for HDPE/HDPE-g-MA/MMT(HT)2 nanocomposites at a fixed MMT content of ~5 wt% versus the percent of HDPE-g-MA in the polymer matrix.

Fig. 16. Comparison of experimental relative modulus with the predictions by the two population Mori–Tanaka model accounting for tactoids and single platelets separately for HDPE-based nanocomposites with 25% (a) and 50% (b) HDPE-g-MA in the polymer matrix versus MMT content.

Fig. 17. Comparison of experimental relative modulus with the predictions by the two population Mori–Tanaka model accounting for tactoids and single platelets separately for HDPE/HDPE-g-MA/MMT(HT)2 nanocomposites at a fixed MMT content of ~5 wt% versus the percent of HDPE-g-MA in the polymer matrix.
composition. The discrepancies are possibly due to the incomplete orientation of the clay platelets and inaccurate parameter estimations for the volume fraction and modulus of the effective particles [15,43].

5. Conclusion

Nanocomposites formed from blends of HDPE and HDPE-g-MA and M2(HT)2 organoclay were melt processed to explore the extent of exfoliation and the mechanical properties over the entire range of matrix composition. WAXS and TEM coupled with detailed particle analysis were used to determine the effect of HDPE-g-MA content on exfoliation. TEM images show drastic improvements in exfoliation with initial amounts of HDPE-g-MA while further addition of HDPE-g-MA gives little visible change. Particle analysis, however, shows that the fraction of single platelets increases at a steady rate for nanocomposites with HDPE-g-MA contents $\geq 25\%$. As the HDPE-g-MA content increases, particle aspect ratio initially increases drastically, reaches a maximum, and slightly decreases, due to the particle thickness limit of a single platelet (0.94 nm).

Similarly, the relative modulus initially improves significantly with increased levels of HDPE-g-MA, while greater HDPE-g-MA content only gives a slight increase. The slight increase in relative modulus in spite of a slight decrease in aspect ratio might be due to the decreased modulus of the matrix, facilitating improvements in relative modulus. Modulus increases and Izod impact strength decreases as MMT levels increase, for all HDPE-g-MA levels. Fracture energy reaches a maximum at low HDPE-g-MA levels, decreases below the value for the pure HDPE nanocomposite, and levels off at higher HDPE-g-MA content. Initially, adding HDPE-g-MA to the matrix results in significantly improved exfoliation and properties. Further addition of HDPE-g-MA, however, lowers the matrix properties enough to offset the benefits of enhanced matrix/organoclay interactions.

Because of the different reinforcement effects of partially exfoliated organoclay tactoids and single platelets, particle analysis was also performed on these two populations separately. A composite model based on the Mori–Tanaka theory was developed to treat organoclay tactoids and single platelets as two separate types of fillers. This two population Mori–Tanaka model gives rather good fit to the organoclay tactoids and single platelets as two separate types of fillers. This model also performed on these two populations separately. A composite model predicts that the modulus in spite of a slight decrease in aspect ratio might be due to the decreased modulus of the matrix, facilitating improvements in relative modulus. Modulus increases and Izod impact strength decreases as MMT levels increase, for all HDPE-g-MA levels. Fracture energy reaches a maximum at low HDPE-g-MA levels, decreases below the value for the pure HDPE nanocomposite, and levels off at higher HDPE-g-MA content. Initially, adding HDPE-g-MA to the matrix results in significantly improved exfoliation and properties. Further addition of HDPE-g-MA, however, lowers the matrix properties enough to offset the benefits of enhanced matrix/organoclay interactions.

Acknowledgements

The authors sincerely thank Southern Clay Products, Inc. for providing organoclay materials and Mr. Tony Gonzalez for his help with WAXS analyses. We thank LyondellBasell and the E.I. Du Pont de Nemours and Co. for providing organoclay materials and Mr. Tony Gonzalez for his help with WAXS analyses. We thank LyondellBasell and the E.I. Du Pont de Nemours and Co. for providing organoclay materials and Mr. Tony Gonzalez for his help with WAXS analyses. We thank LyondellBasell and the E.I. Du Pont de Nemours and Co. for providing organoclay materials and Mr. Tony Gonzalez for his help with WAXS analyses. We thank LyondellBasell and the E.I. Du Pont de Nemours and Co. for providing organoclay materials and Mr. Tony Gonzalez for his help with WAXS analyses.

References
